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Introduction

o Cavitation vortex rope in Francis turbine draft tube
may induce forced or self-oscillations in the

hydraulic system
Part load Full load

Q < Qpep Q> Oy

Self
oscillations

Forced
oscillations

o 1D model of the draft tube including cavitation
volume is required for stability analysis of the
system
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Set of Equations
o Continuity Equation
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O Momggrtym Equation Upstream flow rate
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Convective terms Dilatation viscosity
(New) (Pezzinga et al.)

Divergent geometry
(Tsujimot% A?t al.)
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Electrical Analogy
o Equivalent electrical scheme (Cone + Elbow)
L/2 R, /2 -R,/2 x -R,/2 R /2 L2
~ese T -0 = 1T1-01T 1w
?I(Qz _Q1) -1 ?2(Q1 _Qz)
CC hl+1f2 h2
D T
v Inertia L:é’_f\
v’ Losses R =2 g
2gDA
v Convective terms ) g‘j\z
v" Divergent geometry Rd=5;;§xq
v’ Dilatation viscosity R
v' Mass flow gain factor 1=
v' Cavitation compliance c, =N _ GAKX

Wave speed
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o 444 MW Francis turbine, British Columbia, Canada
v Reduced scale model tested at the EPFL test rig

B e L B B

[).kg™] [l

OP#PL 272.4 0.58 0. 318 0. 134 0. 055 15
OP#FL 364.6 1.34 0.275 0.268 0.135 30

Full load: cavitation surge phenomenon

Self-oscillations of the cavitation vortex rope at frequency
f=25Hz

Part load : no cavitation surge phenomenon
(Favrel A.)
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Stability Analysis
o SIMSEN model of the hydraulic system

Ps H |______ Divergentand convective drafl tube model___ _ —_— A_J{B(X )] X =V (X)

P4 P3 P2 P
— — —

Reservoir

o Small perturbation stability analysis

v" Analysis of the damping a of the first eigenmode

v" Positive damping corresponds to unstable eigenmode
leading to self-oscillations of the hydraulic system.
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Influence of Divergent Geometry

o Damping of the 1st eigenmode as function of the

divergent ratio ( x=0s, u"=0Pas)
Part load Full load
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v High wave speed : influence of divergent is negligible

v Low wave speed : damping is modified by the divergent ratio

Potential self oscillations due to the divergent ratio
- ( similar results to Tsujimoto et al.)
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Influence of Divergent Geometry

o0 Frequency of the 1st eigenmode as function of the

divergent ratio ( #=0s,x"=0Pas)
Part load & Full load
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1.0 |

0.0
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v' Eigenfrequency modified by the divergent ratio for low wave
speed values
v" For the case study divergent ratio, a=25m.s™ predicts first

eigenfrequency at f =2.5 Hz
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Influence of Convective Terms

o Damping modification by the convective terms
I’atio (a:25 m.s'l,;(:Os ,u"zo Pa.s)

Part load Full load
0.8 0.8
0.6 r Unstable region | Unstable region
0.4 r
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0.0 4 I I . _
—-&_0.2 3 5 7 9 11 13 15 _&
3 3
-0.4
-0.6
0.8 | . -0. ,
—a— Convective Model —a— Convective Model
-L.O F —+—Non convective model 1.0 +— Non convective model
-1.2 -1.2
AyA4; [ AyA;[-]

v Convective terms have a stabilizing influence
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viscosity and the MFGF (a=25ms™)
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Influence of MFGF

& Dilatation Viscosity
o Damping of the 1st eigenmode as function of the dilatation

5

Part load

—a—y=0s ——y=0.01s
—+—=0.02s ——+=0.03s
—0—y=0.04s ——y=0.05s

N Unstable region

1'500

2'

1" [Pa.s]

00

MFGF: stabilizing effect in full load
Higher than 400 Pa.s for part load conditions
Lower than 1000 Pa.s for full load conditions

alsl]
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-0.4

Damping: decreases linearly to stabilize the system
MFGF: destabilizing effect in part load

Full load
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'000
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——— Similar results to Tsujimoto et al.
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Conclusions
o Divergent ratio is the destabilizing parameter of the
draft tube model:;

o Convective terms have a stabilizing influence;

o Mass flow gain factor stabilizes or destabilizes
cavitation volume fluctuations respectively for full
load and part load conditions;

o To avoid prediction of self-oscillations at part load
conditions, dilatation viscosity must be considered .
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