

Cavitation Surge Modelling in Francis Turbine Draft Tube

Sébastien ALLIGNÉ, Christophe NICOLET, Yoshinobu TSUJIMOTO, François AVELLAN

5th IAHR International Workshop on Cavitation and Dynamic Problems in Hydraulic Machinery

September 8 to 11, 2013, Lausanne, Switzerland

Contents

- o Introduction
- o Draft Tube Model
 - ✓ Set of equations
 - Electrical analogy for SIMSEN model
- o Case Study

Results and Discussions

- ✓ Small perturbation stability analysis
- ✓ Influence of divergent geometry
- ✓ Influence of convective terms
- ✓ Influence of mass flow gain factor
- Influence of dilatation viscosity

o Conclusions

Introduction

 Cavitation vortex rope in Francis turbine draft tube may induce forced or self-oscillations in the hydraulic system

 $Q < Q_{BEP}$

Full load $Q > Q_{BEP}$

Forced oscillations

Self oscillations

 1D model of the draft tube including cavitation volume is required for stability analysis of the system

Upstream flow rate (Tsujimoto et al.)

Set of Equations

o Continuity Equation

Momentum Equation

$$\frac{1}{gA}\frac{\partial Q}{\partial t} + \underbrace{\frac{Q}{gA^2}\frac{\partial Q}{\partial x}}_{gA^3} - \underbrace{\frac{Q^2}{gA^3}}_{gA^3}K_x + \frac{\partial h}{\partial x} + \underbrace{\frac{\tau_0\pi D}{\rho gA}}_{\rho gA} - \underbrace{\frac{\mu''}{\rho gA}\frac{\partial^2 Q}{\partial x^2}}_{\rho gA} = 0$$
Convective terms
(New)
Dilatation viscosity
(Pezzinga et al.)
$$\begin{array}{c} \text{Divergent geometry} \\ (Tsujimoto et al.) \\ K_x = \frac{\partial A}{\partial x}\end{array}$$

Electrical Analogy

Equivalent electrical scheme (Cone + Elbow)

✓ Inertia

✓ Losses

- ✓ Convective terms
- Divergent geometry
- Dilatation viscosity
- ✓ Mass flow gain factor
- ✓ Cavitation compliance

Case Study

o 444 MW Francis turbine, British Columbia, Canada

✓ Reduced scale model tested at the EPFL test rig

PF2							
	Operating Point	E	Q/Q _{BEP}	N _{ED}	Q _{ED}	T _{ED}	У
	[-]	[J.kg ⁻¹]	[-]	[-]	[-]	[-]	[°]
	OP#PL	272.4	0.58	0.318	0.134	0.055	15
	OP#FL	364.6	1.34	0.275	0.268	0.135	30
	Full Self-oscillatio	load: cay	vitation s cavitation f = 2.5 Hz	urge pł on vorte	nenome ex rope	enon at free	luenc

Part load : no cavitation surge phenomenon (Favrel A.)

Stability Analysis

o SIMSEN model of the hydraulic system

o Small perturbation stability analysis

- \checkmark Analysis of the damping α of the first eigenmode
- Positive damping corresponds to unstable eigenmode leading to self-oscillations of the hydraulic system.

Influence of Divergent Geometry

• Damping of the 1st eigenmode as function of the divergent ratio ($\chi = 0 \text{ s}, \mu'' = 0 \text{ Pa.s}$)

High wave speed : influence of divergent is negligible
 Low wave speed : damping is modified by the divergent ratio
 Potential self oscillations due to the divergent ratio (similar results to Tsujimoto et al.)

Influence of Divergent Geometry

• Frequency of the 1st eigenmode as function of the divergent ratio ($\chi = 0 \text{ s}, \mu'' = 0 \text{ Pa.s}$)

- Eigenfrequency modified by the divergent ratio for low wave speed values
- ✓ For the case study divergent ratio, $a = 25 \text{ m.s}^{-1}$ predicts first eigenfrequency at f = 2.5 Hz

Influence of Convective Terms

• Damping modification by the convective terms ratio $(a = 25 \text{ m.s}^{-1}, \chi = 0 \text{ s}, \mu'' = 0 \text{ Pa.s})$

Convective terms have a stabilizing influence

Power Vision Engineering Influence of MFGF & Dilatation Viscosity

• Damping of the 1st eigenmode as function of the dilatation viscosity and the MFGF $(a = 25 \text{ m.s}^{-1})$ Part load Full load

Conclusions

- Divergent ratio is the destabilizing parameter of the draft tube model;
- o Convective terms have a stabilizing influence;
- Mass flow gain factor stabilizes or destabilizes cavitation volume fluctuations respectively for full load and part load conditions;
- To avoid prediction of self-oscillations at part load conditions, dilatation viscosity must be considered.

Thank you for your attention!

Power Vision *Engineering*

1, ch. Des Champs-Courbes CH-1024 Ecublens Switzerland <u>http://www.powervision-eng.ch</u> info@powervision-eng.ch