Francis turbine part load resonance risk analytical assessment

C. Nicolet, C. Landry, S. Alligné, A. Béguin

SHF/AFM 2019, Sion, Switzerland, November 06-07, 2019
Contents

• Context and key goals
• Eigenvalue computation
 ✓ Numerical equations
 ✓ Analytical equations
• Examples of application
 ✓ Hydraulic system 1
 ✓ Hydraulic system 2
 ✓ Hydraulic system 3
• Conclusions / Take away message
Contents

• Context and key goals
• Eigenvalue computation
 ✓ Numerical equations
 ✓ Analytical equations
• Examples of application
 ✓ Hydraulic system 1
 ✓ Hydraulic system 2
 ✓ Hydraulic system 3
• Conclusions / Take away message
Context and Key goals

• Massive penetration of alternative renewable energies (Solar, wind power)
• Stochastic nature of the renewable energy production

• To maintain balanced production:
 ✓ Sufficient reserve capacity
 ✓ Primary and secondary control capabilities

→ Hydropower plants
→ Off-design operation

Mean annual growth rates of electricity production 2002-2012
Context and Key goals

- **Frequent power transients:**
 - ✓ Require a wide operating range
 - ✓ May induce high levels of vibration and large pressure fluctuations

Part load condition

Full load condition

* Favrel et al., 2013
* Müller et al., 2013

\[0.2 - 0.4\] • Turbine rotational speed

![Graph](image)

- Pressure fluctuations in the draft tube
- Pressure fluctuations in the spiral case

Resonance excited by the part load vortex

Self-excited instability at full load

HYPERBOLE (ERC/FP7-ENERGY-2013-1-Grant 608532)
Contents

• Context and key goals

• Eigenvalue computation
 ✓ Numerical equations
 ✓ Analytical equations

• Examples of application
 ✓ Hydraulic system 1
 ✓ Hydraulic system 2
 ✓ Hydraulic system 3

• Conclusions / Take away message
SIMSEN software

- SIMSEN software
 - Hydraulic circuit
 - Electrical installations
 - Rotating inertias
 - Control system

Modeling from water to wire
Electrical Analogy

- Mass and momentum equations:
 \[
 \frac{\partial H}{\partial t} + \frac{d^2}{gA} \frac{\partial Q}{\partial x} = 0
 \]
 \[
 \frac{\partial H}{\partial x} + \frac{1}{gA} \frac{\partial Q}{\partial t} + \frac{\lambda |Q|}{2 g DA^2} Q = 0
 \]

- Electrical analogy:
 ✓ (Bergeron, 1950; Paynter, 1953)

- Assumptions:
 ✓ Uniform flow
 ✓ 1-D approach
 ✓ Convective terms neglected
 ✓ Vertical displacements neglected
Eigenvalue computation

- Set of differential equations

\[[A] \cdot \frac{d\bar{X}}{dt} + [B(\bar{X})] \cdot \bar{X} = C(\bar{x}) \]

- Small perturbation

\[\bar{X} = \bar{X}_0 + \delta \bar{X} \]

\[\frac{d(\bar{X}_0 + \delta \bar{X})}{dt} = f(\bar{X}_0 + \delta \bar{X}) \]

- Eigenfrequency

\[\det \left([I] \cdot s + [A_l]^{-1} [B_l] \right) = 0 \]
Contents

• Context and key goals
• **Eigenvalue computation**
 ✓ Numerical equations
 ✓ Analytical equations
• Examples of application
 ✓ Hydraulic system 1
 ✓ Hydraulic system 2
 ✓ Hydraulic system 3
• Conclusions / Take away message
Natural frequencies

- Hydraulic system modelled by an equivalent pipe

\[l_{tot} = \sum_{i=1}^{n} l_i \]

\[a_{equ} = \frac{l_{tot}}{\sum_{i=1}^{n} \frac{l_i}{a_i}} \]

\[f_k = \frac{a_{equ}}{\lambda_k} = \frac{a_{equ}}{2 \cdot l_{tot}} \]

Total length
Equivalent wave speed
Natural frequency (Order k)

Standing wave
First natural frequency of the cavitating draft tube

- Simplified hydroacoustic model of the frictionless cavitating draft tube

\[C_{DT} = \frac{l_{DT} \cdot g \cdot \bar{A}_{DT}}{a_{DT}^2} \]

\[L_{DT} = \frac{l_{DT}}{g \cdot \bar{A}_{DT}} \]

\[f_0 = \frac{1}{2 \cdot \pi} \sqrt{\frac{1}{L_{DT} \cdot C_{DT}}} = \frac{1}{2 \cdot \pi} \frac{a_{DT}}{l_{DT}} \]

\[f_0 = \frac{1}{2 \pi} \sqrt{\frac{k}{m}} \approx \frac{1}{2 \pi} \sqrt{\frac{1}{c_{DT} l_{DT}}} \]

\[l_{DT} = \text{DT length [m]} \]
\[A_{DT} = \text{DT cross section area [m}^2\text{]} \]
\[a_{DT} = \text{DT wave speed [m/s]} \]
First natural frequency of the cavitating draft tube

- Simplified hydroacoustic model of the frictionless cavitating draft tube

Cavitation compliance

$$C_{DT} = \frac{l_{DT} \cdot g \cdot A_{DT}}{a_{DT}^2}$$

Tailrace pipe inductance

$$L_{TR} = \frac{l_{TR}}{g \cdot A_{TR}}$$

First natural frequency

$$f_o = \frac{1}{2 \cdot \pi} \sqrt{\frac{1}{L_{TR} \cdot C_{DT}}} = \frac{1}{2 \cdot \pi} \sqrt{\frac{a_{DT}}{l_{DT} \cdot l_{TR} \cdot A_{DT} / A_{TR}}}$$

- Draft tube
- Tailrace pipe

\[\begin{align*}
l_{TR} & = \text{TR pipe length [m]} \\
A_{TR} & = \text{TR pipe cross section area [m}^2\text{]} \\
l_{TR} \cdot A_{TR} & = \text{Cavitation compliance} \\
L_{TR} & = \text{Tailrace pipe inductance} \\
f_o & = \text{First natural frequency} \quad \text{Dörfler, 2013}
\end{align*}\]
Analytical equations

Summary

<table>
<thead>
<tr>
<th>Equivalent pipe</th>
<th>Draft tube without TR</th>
<th>Draft tube with TR</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st order</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$f_1 = \frac{a_{equ}}{\lambda_k} = \frac{a_{equ}}{2 \cdot l_{tot}}$</td>
<td>$f_o = \frac{1}{2 \cdot \pi} \frac{a_{DT}}{l_{DT}}$</td>
<td>$f_o = \frac{1}{2 \cdot \pi} \frac{a_{DT}}{\sqrt{l_{DT} \cdot l_{TR} A_{DT} A_{TR}}}$</td>
</tr>
<tr>
<td>2nd-6th order</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$f_k = \frac{a_{equ}}{\lambda_k} = \frac{a_{equ}}{2 \cdot l_{tot}} \cdot k$</td>
<td>$f_k = \frac{a_{equ}}{\lambda_k} = \frac{a_{equ}}{2 \cdot l_{tot}} \cdot k$</td>
<td>$f_k = \frac{a_{equ}}{\lambda_k} = \frac{a_{equ}}{2 \cdot l_{tot}} \cdot k$</td>
</tr>
</tbody>
</table>
Contents

• Context and key goals
• Eigenvalue computation
 ✓ Numerical equations
 ✓ Analytical equations
• Examples of application
 ✓ Hydraulic system 1
 ✓ Hydraulic system 2
 ✓ Hydraulic system 3
• Conclusions / Take away message
Example of applications

• Hydraulic system 1

Penstock
- \(L = 300 \text{ m} \)
- \(D = 1.2 \text{ m} \)
- \(a = 1'250 \text{ m/s} \)
- \(\lambda = 0.012 \text{ -} \)

Turbine
- \(P_n = 5 \text{ MW} \)
- \(Q_n = 5.0 \text{ m}^3/\text{s} \)
- \(H_n = 100 \text{ mWC} \)
- \(N_n = 750 \text{ rpm} \)
- \(D_{ref} = 0.846 \text{ m} \)
- \(N_q = 53 \text{ -} \)

Draft tube
- \(L = 10 \text{ m} \)
- \(D = 1.2 \text{ m} \)
- \(a = [50-100] \text{ m/s} \)
- \(\lambda = 0.012 \text{ -} \)

\(N_n = 750 \text{ rpm} = 12.5 \text{ Hz} \)

\(f_{\text{excitation}} = [0.2 - 0.4] \cdot f_n \)

\(f_{\text{excitation}} = [2.5 - 5 \text{ Hz}] \)
Example of applications

- **Hydraulic system 1**

 Draft tube

 Penstock

 Turbine

 Elastic mode shape
 - Non-Linear amplitude variation of pressure in the TR as function of the length
 - Non-constant amplitude variation of discharge in the TR as function of the length

 \[f_1 = \frac{a_{\text{equ}}}{\lambda_1} = \frac{a_{\text{equ}}}{2 \cdot l_{\text{tot}}} \cdot 1 \]

 \[f_o = \frac{1}{2 \pi} \frac{a_{DT}}{l_{DT}} \]
Example of applications

- **Hydraulic system 1**

 - 1st order: Better agreement with \(f_1 \)
 - 2nd-6th order: Rather good agreement for natural frequencies
 Maximum error of 14%.
 - Risk of resonance with the draft tube in red.

System 1

<table>
<thead>
<tr>
<th>(f_0) [Hz]</th>
<th>Analytical calculation a DT (min) [m/s]</th>
<th>Eigen value calculation a DT (min) [m/s]</th>
<th>Relative error [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>f0</td>
<td>0.8</td>
<td>1.24</td>
<td>-35.48</td>
</tr>
<tr>
<td>f1</td>
<td>1.14</td>
<td>1.24</td>
<td>-8.00</td>
</tr>
<tr>
<td>f2</td>
<td>2.27</td>
<td>2.09</td>
<td>8.61</td>
</tr>
<tr>
<td>f3</td>
<td>3.41</td>
<td>3.67</td>
<td>-7.08</td>
</tr>
<tr>
<td>f4</td>
<td>4.55</td>
<td>4.18</td>
<td>8.85</td>
</tr>
<tr>
<td>f5</td>
<td>5.68</td>
<td>5.99</td>
<td>-5.18</td>
</tr>
<tr>
<td>f6</td>
<td>6.82</td>
<td>6.15</td>
<td>10.89</td>
</tr>
</tbody>
</table>

\(f_{\text{excitation}} = [2.5 - 5 \text{ Hz}] \)

\(a = 50 \text{ m/s} \)

\(f_1 = \frac{a_{\text{equ}}}{\lambda_1} = \frac{a_{\text{equ}}}{2 \cdot l_{\text{tot}}} \)

\(f_o = \frac{1}{2 \cdot \pi} \frac{a_{\text{DT}}}{l_{\text{DT}}} \)
Contents

• Context and key goals
• Eigenvalue computation
 ✓ Numerical equations
 ✓ Analytical equations
• Examples of application
 ✓ Hydraulic system 1
 ✓ Hydraulic system 2
 ✓ Hydraulic system 3
• Conclusions / Take away message
Example of applications

- **Hydraulic system 2**

<table>
<thead>
<tr>
<th>Component</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Penstock</td>
<td>L = 300 m, D = 1.2 m, a = 1'250 m/s, (\lambda = 0.012)</td>
</tr>
<tr>
<td>Turbine</td>
<td>(P_n = 5) MW, (Q_n = 5.0) m³/s, (H_n = 100) mWC, (N_n = 750) rpm, (D_{ref} = 0.846) m, (N_q = 53)</td>
</tr>
<tr>
<td>Draft tube</td>
<td>L = 10 m, D = 1.2 m, a = [50-100] m/s, (\lambda = 0.012)</td>
</tr>
<tr>
<td>Tailrace pipe</td>
<td>L = 100 m, D = 1.2 m, a = 1'250 m/s, (\lambda = 0.012)</td>
</tr>
</tbody>
</table>

- \(N_n = 750 \) rpm = 12.5 Hz

\(f_{excitation} = [0.2 – 0.4] \cdot f_n \)

\(f_{excitation} = [2.5 – 5] \) Hz
Example of applications

- **Hydraulic system 2**

 - **Draft tube**
 - **Penstock**
 - **Turbine**
 - **Tailrace pipe**

 - **Rigid column mode shape**
 - Linear amplitude variation of pressure in the TR
 - Constant amplitude variation of discharge in the TR
 - Similar to surge tank mass oscillation between TR pipe and DT compliance

 - **Equation**
 \[
 f_1 = \frac{a_{\text{equ}}}{2 \cdot \pi \cdot l_{\text{tot}}}
 \]
 \[
 f_o = \frac{1}{2 \cdot \pi} \frac{a_{\text{DT}}}{\sqrt{l_{\text{DT}} \cdot A_{\text{DT}} / A_{\text{TR}}}}
 \]

 - **Modes**
 - **1st Pressure mode**
 - **1st Discharge mode**
 - **Rigid column mode shape**
Example of applications

- **Hydraulic system 2**

 \[f_{\text{excitation}} = [2.5 \text{ – } 5 \text{ Hz}] \]

<table>
<thead>
<tr>
<th>(f_0 \text{ [Hz]})</th>
<th>(f_1 \text{ [Hz]})</th>
<th>(f_2 \text{ [Hz]})</th>
<th>(f_3 \text{ [Hz]})</th>
<th>(f_4 \text{ [Hz]})</th>
<th>(f_5 \text{ [Hz]})</th>
<th>(f_6 \text{ [Hz]})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analytical calculation (a \text{ DT (min)}) [m/s]</td>
<td>Eigen value calculation (a \text{ DT (min)}) [m/s]</td>
<td>Relative error [%]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.25</td>
<td>0.27</td>
<td>-7.41</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.96</td>
<td>0.27</td>
<td>255.56</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.92</td>
<td>2.04</td>
<td>-5.88</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.88</td>
<td>2.53</td>
<td>13.83</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.85</td>
<td>4.12</td>
<td>-6.55</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.81</td>
<td>4.87</td>
<td>-1.23</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.77</td>
<td>5.16</td>
<td>11.82</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(f_0 \text{ [Hz]})</th>
<th>(f_1 \text{ [Hz]})</th>
<th>(f_2 \text{ [Hz]})</th>
<th>(f_3 \text{ [Hz]})</th>
<th>(f_4 \text{ [Hz]})</th>
<th>(f_5 \text{ [Hz]})</th>
<th>(f_6 \text{ [Hz]})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analytical calculation (a \text{ DT (max)}) [m/s]</td>
<td>Eigen value calculation (a \text{ DT (max)}) [m/s]</td>
<td>Relative error [%]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.5</td>
<td>0.55</td>
<td>-9.09</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.19</td>
<td>0.55</td>
<td>116.36</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.38</td>
<td>2.1</td>
<td>13.33</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.57</td>
<td>4.05</td>
<td>-11.85</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.76</td>
<td>4.88</td>
<td>-2.46</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.95</td>
<td>6.18</td>
<td>-3.72</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.14</td>
<td>6.36</td>
<td>12.26</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **1**\(^{\text{st}}\) order: Good agreement with \(f_0 \)
- **2**\(^{\text{nd}}\)–**6**\(^{\text{th}}\) order: Rather good agreement for natural frequencies
 Maximum error of 14%.
- Risk of resonance with the draft tube in red.
Contents

• Context and key goals
• Eigenvalue computation
 ✓ Numerical equations
 ✓ Analytical equations
• Examples of application
 ✓ Hydraulic system 1
 ✓ Hydraulic system 2
 ✓ Hydraulic system 3
• Conclusions / Take away message
Example of applications

- **Hydraulic system 3**

 - **Penstock**
 - \(L = 300 \text{ m} \)
 - \(D = 1.2 \text{ m} \)
 - \(a = 1'250 \text{ m/s} \)
 - \(\lambda = 0.012 \)

 - **Turbine**
 - \(P_n = 5 \text{ MW} \)
 - \(Q_n = 5.0 \text{ m}^3/\text{s} \)
 - \(H_n = 100 \text{ mWC} \)
 - \(N_n = 750 \text{ rpm} \)
 - \(D_{ref} = 0.846 \text{ m} \)
 - \(N_q = 53 \)

 - **Draft tube**
 - \(L = 10 \text{ m} \)
 - \(D = 1.2 \text{ m} \)
 - \(a = [50-100] \text{ m/s} \)
 - \(\lambda = 0.012 \)

 - **Tailrace pipe**
 - \(L = 100 \text{ m} \)
 - \(D = 2 \text{ m} \)
 - \(a = 1'250 \text{ m/s} \)
 - \(\lambda = 0.012 \)

\[N_n = 750 \text{ rpm} = 12.5 \text{ Hz} \]
\[f_{excitation} = [0.2 - 0.4] \cdot f_n \]
\[f_{excitation} = [2.5 - 5 \text{ Hz}] \]
Example of applications

- **Hydraulic system 3**

 - **Draft tube**
 - 1st Pressure mode
 - Rigid column mode shape
 - 1st Discharge mode

 - **Penstock**
 - **Turbine**
 - **Tailrace pipe**

 - **Rigid column mode shape**
 - Linear amplitude variation of pressure in the TR
 - Constant amplitude variation of discharge in the TR
 - Similar to surge tank mass oscillation between TR pipe and DT compliance

\[
f_1 = \frac{\alpha_{equ}}{A_{TR}} \frac{\alpha_{equ}}{2 \cdot l_{tot}}
\]

\[
f_o = \frac{1}{2 \cdot \pi} \frac{A_{DT} \sqrt{l_{DT} \cdot l_{TR}}}{A_{TR}}
\]
Example of applications

- **Hydraulic system 3**

![Diagram of a hydraulic system with a draft tube and a turbine connected via a penstock]

- **1st order**: Good agreement with f_0
- **2nd–6th order**: Rather good agreement for natural frequencies. Maximum error of 14%.
- **Risk of resonance with the draft tube in red.**

Analytical calculation

<table>
<thead>
<tr>
<th>System 3</th>
<th>Analytical calculation</th>
<th>Eigen value calculation</th>
<th>Relative error</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>a DT (max)</td>
<td>a DT (max)</td>
<td>[%]</td>
</tr>
<tr>
<td></td>
<td>[m/s]</td>
<td>[m/s]</td>
<td></td>
</tr>
<tr>
<td>f_0 [Hz]</td>
<td>0.84</td>
<td>0.81</td>
<td>3.70</td>
</tr>
<tr>
<td>f_1 [Hz]</td>
<td>1.19</td>
<td>0.81</td>
<td>46.91</td>
</tr>
<tr>
<td>f_2 [Hz]</td>
<td>2.38</td>
<td>2.1</td>
<td>13.33</td>
</tr>
<tr>
<td>f_3 [Hz]</td>
<td>3.57</td>
<td>4.03</td>
<td>-11.41</td>
</tr>
<tr>
<td>f_4 [Hz]</td>
<td>4.76</td>
<td>4.72</td>
<td>0.85</td>
</tr>
<tr>
<td>f_5 [Hz]</td>
<td>5.95</td>
<td>6.14</td>
<td>-3.09</td>
</tr>
<tr>
<td>f_6 [Hz]</td>
<td>7.14</td>
<td>6.55</td>
<td>9.01</td>
</tr>
</tbody>
</table>

Analytical calculation

<table>
<thead>
<tr>
<th>System 3</th>
<th>Analytical calculation</th>
<th>Eigen value calculation</th>
<th>Relative error</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>a DT (min)</td>
<td>a DT (min)</td>
<td>[%]</td>
</tr>
<tr>
<td></td>
<td>[m/s]</td>
<td>[m/s]</td>
<td></td>
</tr>
<tr>
<td>f_0 [Hz]</td>
<td>0.42</td>
<td>0.42</td>
<td>0.00</td>
</tr>
<tr>
<td>f_1 [Hz]</td>
<td>0.96</td>
<td>0.42</td>
<td>128.57</td>
</tr>
<tr>
<td>f_2 [Hz]</td>
<td>1.92</td>
<td>2.04</td>
<td>-5.88</td>
</tr>
<tr>
<td>f_3 [Hz]</td>
<td>2.88</td>
<td>2.55</td>
<td>12.94</td>
</tr>
<tr>
<td>f_4 [Hz]</td>
<td>3.85</td>
<td>4.12</td>
<td>-6.55</td>
</tr>
<tr>
<td>f_5 [Hz]</td>
<td>4.81</td>
<td>4.84</td>
<td>-0.62</td>
</tr>
<tr>
<td>f_6 [Hz]</td>
<td>5.77</td>
<td>6.16</td>
<td>-6.33</td>
</tr>
</tbody>
</table>

Excitation $f_{\text{excitation}} = [2.5 - 5 \text{ Hz}]$

- **Risk of resonance with the draft tube in red.**

- **Hydraulic system 3**

- **Excitation** $f_{\text{excitation}} = [2.5 - 5 \text{ Hz}]$
Contents

• Context and key goals
• Eigenvalue computation
 ✓ Numerical equations
 ✓ Analytical equations
• Examples of application
 ✓ Hydraulic system 1
 ✓ Hydraulic system 2
 ✓ Hydraulic system 3
• Conclusions / Take away message
Conclusions

• Analytical approach to determine the possible risk of resonance with the draft tube vortex rope excitation (2.5-5Hz)

• 1st order: Better agreement with f_1 for the hydraulic system without a tailrace pipe (hydraulic system 1) → Elastic mode shape
• 1st order: Good agreement with f_0 for the hydraulic system with a tailrace pipe (hydraulic system 2 & 3) → rigid column mode shape

• 2nd-6th order: Rather good agreement for natural frequencies (Maximum error of 14%).

• Limitations of the methodology
 ✓ Parallel branches:
 • Modelling by a single branch with equivalent parameters to obtain a first order of magnitude.
 • Real system will feature much more complex and numerous eigenvalues (hydraulic system asymmetry, diameters, bifurcations)
Take away Message

- This analytical method is included as ANNEXE E.2 of the new IEC Technical Specification 62882 ED1 (to be issued in 2020)

Without a tailrace pipe

1st order

\[f_k = \frac{a_{equ}}{\lambda_k} = \frac{a_{equ}}{2 \cdot l_{tot}} \cdot k \]

2nd–6th order

\[f_k = \frac{a_{equ}}{\lambda_k} = \frac{a_{equ}}{2 \cdot l_{tot}} \cdot k \]

With a tailrace pipe

1st order

\[f_o = \frac{1}{2 \cdot \pi} \frac{a_{DT}}{\sqrt{l_{DT} \cdot l_{TR} \cdot A_{DT} \cdot A_{TR}}} \]

2nd–6th order

\[f_k = \frac{a_{equ}}{\lambda_k} = \frac{a_{equ}}{2 \cdot l_{tot}} \cdot k \]

Hydraulic machines – IEC Technical specification for Francis turbine pressure fluctuation
Thank you for your attention!
Example of applications

<table>
<thead>
<tr>
<th></th>
<th>Hydraulic system 1</th>
<th>Hydraulic system 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>f_1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>